Những câu hỏi liên quan
Bà ngoại nghèo khó
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 12 2021 lúc 16:54

1.

\(\dfrac{3a+b+2c}{2a+c}=\dfrac{a+3b+c}{2b}=\dfrac{a+2b+2c}{b+c}\)

\(\Leftrightarrow\dfrac{a+b+c+2a+c}{2a+c}=\dfrac{a+b+c+2b}{2b}=\dfrac{a+b+c+b+c}{b+c}\)

\(\Leftrightarrow\dfrac{a+b+c}{2a+c}+1=\dfrac{a+b+c}{2b}+1=\dfrac{a+b+c}{b+c}+1\)

\(\Leftrightarrow\dfrac{a+b+c}{2a+c}=\dfrac{a+b+c}{2b}=\dfrac{a+b+c}{b+c}\)

TH1: \(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{\left(-c\right).\left(-a\right).\left(-b\right)}{abc}=-1\)

TH2: \(a+b+c\ne0\)

\(\Rightarrow\dfrac{1}{2a+c}=\dfrac{1}{2b}=\dfrac{1}{b+c}\)

\(\Rightarrow\left\{{}\begin{matrix}2a+c=b+c\\2b=b+c\\\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2a=b\\b=c\end{matrix}\right.\) \(\Rightarrow2a=b=c\)

\(\Rightarrow P=\dfrac{\left(a+2a\right)\left(2a+2a\right)\left(2a+a\right)}{a.2a.2a}=9\)

Bình luận (0)
Nguyễn Việt Lâm
4 tháng 12 2021 lúc 16:55

Bài 2 đề sai

Ở phân thức thứ 2 không thể là \(\dfrac{y+3x-x}{x}\)

Bình luận (0)
Nguyễn Hoàng Minh
4 tháng 12 2021 lúc 17:03

Bài 2:

\(P=\dfrac{x+3y}{y}\cdot\dfrac{y+3z}{z}\cdot\dfrac{z+3x}{x}=\dfrac{\left(x+3y\right)\left(y+3z\right)\left(z+3x\right)}{xyz}\)

Với \(x+y+z=0\)

\(\dfrac{x+3y-z}{z}=\dfrac{y+3z-x}{x}=\dfrac{z+3x-y}{y}\\ \Leftrightarrow\dfrac{x+3y+x+y}{z}=\dfrac{y+3z+y+z}{x}=\dfrac{z+3x+x+z}{y}\\ \Leftrightarrow\dfrac{2\left(x+2y\right)}{z}=\dfrac{2\left(y+2z\right)}{x}=\dfrac{2\left(z+2x\right)}{y}\\ \Leftrightarrow\dfrac{2\left(y-z\right)}{z}=\dfrac{2\left(z-x\right)}{x}=\dfrac{2\left(x-y\right)}{y}\\ \Leftrightarrow\dfrac{2y-2z}{z}=\dfrac{2z-2x}{x}=\dfrac{2x-2y}{y}\\ \Leftrightarrow\dfrac{2y}{z}-2=\dfrac{2z}{x}-2=\dfrac{2x}{y}-2\\ \Leftrightarrow\dfrac{2y}{z}=\dfrac{2z}{x}=\dfrac{2x}{y}\\ \Leftrightarrow\dfrac{y}{z}=\dfrac{z}{x}=\dfrac{x}{y}\Leftrightarrow x=y=z=0\left(\text{trái với GT}\right)\)

Với \(x+y+z\ne0\)

\(\Leftrightarrow\dfrac{x+3y-z}{z}=\dfrac{y+3z-x}{x}=\dfrac{z+3x-y}{y}=\dfrac{3\left(x+y+z\right)}{x+y+z}=3\\ \Leftrightarrow\left\{{}\begin{matrix}x+3y-z=3z\\y+3z-x=3x\\z+3x-y=3y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3y=4z\\y+3z=4x\\z+3x=4y\end{matrix}\right.\\ \Leftrightarrow P=\dfrac{4x\cdot4y\cdot4z}{xyz}=64\)

Bình luận (0)
Bà ngoại nghèo khó
Xem chi tiết
Bà ngoại nghèo khó
Xem chi tiết
Big City Boy
Xem chi tiết
Thịnh Gia Vân
19 tháng 12 2020 lúc 21:16

Bài này dễ thôi:vv

Theo đề ta có: \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=0\Leftrightarrow\dfrac{xbc+yac+zab}{abc}=0\Leftrightarrow xbc+yac+zab=0\)

Lại có:\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=2\Rightarrow\left(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}\right)^2=4\)

=>\(\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}+2\left(\dfrac{ab}{xy}+\dfrac{bc}{yz}+\dfrac{ca}{xz}\right)=4\)

=>\(\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}+2\left(\dfrac{abz+bcx+cay}{xyz}\right)=4\)

=>\(\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}+2.0=4\Rightarrow\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}=2\)

Vậy...

Bình luận (2)
Kitana
Xem chi tiết
Kamato Heiji
24 tháng 4 2021 lúc 8:47

Lời giải :

\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\Leftrightarrow\dfrac{x^2}{a^2+b^2+c^2}-\dfrac{x^2}{a^2}+\dfrac{y^2}{a^2+b^2+c^2}-\dfrac{y^2}{b^2}+\dfrac{z^2}{a^2+b^2+c^2}-\dfrac{z^2}{c^2}=0\)

\(\Leftrightarrow x^2\left(\dfrac{1}{a^2+b^2+c^2}-\dfrac{1}{a^2}\right)+y^2\left(\dfrac{1}{a^2+b^2+c^2}-\dfrac{1}{b^2}\right)+z^2\left(\dfrac{1}{a^2+b^2+c^2}-\dfrac{1}{c^2}\right)=0\)

Do \(\dfrac{1}{a^2+b^2+c^2}-\dfrac{1}{a^2}\ne0;\dfrac{1}{a^2+b^2+c^2}-\dfrac{1}{b^2}\ne0;\dfrac{1}{a^2+b^2+c^2}-\dfrac{1}{c^2}\ne0\)

\(\Rightarrow\) \(\left\{{}\begin{matrix}x^2=0\\y^2=0\\z^2=0\end{matrix}\right.\) \(\Rightarrow\)\(\left\{{}\begin{matrix}x=0\\y=0\\z=0\end{matrix}\right.\)

Thay vào biểu thức P :

\(P=0^{2020}+\left(y-1\right)^{2022}+\left(z-1\right)^{203}=0+1-1=0\)

Bình luận (0)
Anh Khương Vũ Phương
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
Akai Haruma
10 tháng 1 2022 lúc 23:46

Lời giải:
\(A=\left(\frac{x}{y-z}+\frac{y}{z-x}+\frac{z}{x-y}\right)\left(\frac{1}{y-z}+\frac{1}{z-x}+\frac{1}{x-y}\right)-\frac{x}{(y-z)(z-x)}-\frac{x}{(y-z)(x-y)}-\frac{y}{(z-x)(x-y)}-\frac{y}{(z-x)(y-z)}-\frac{z}{(x-y)(y-z)}-\frac{z}{(x-y)(z-x)}\)

\(=0-\frac{x(x-y)+x(z-x)+y(y-z)+y(x-y)+z(z-x)+z(y-z)}{(x-y)(y-z)(z-x)}\)

\(=0-\frac{x^2+xz+y^2+xy+z^2+zy-(xy+x^2+yz+y^2+zx+z^2)}{(x-y)(y-z)(z-x)}=0-\frac{0}{(x-y)(y-z)(z-x)}=0\)

Bình luận (0)
Chi Nguyễn
Xem chi tiết
Phạm Thúy Vy
Xem chi tiết
Kuro Kazuya
13 tháng 4 2017 lúc 13:57

Bài 1

\(M=\dfrac{2x+y+z-15}{x}+\dfrac{x+2y+z-15}{y}+\dfrac{x+y+2z-15}{z}\)

\(M=\dfrac{x+12-15}{x}+\dfrac{y+12-15}{y}+\dfrac{z+12-15}{z}\)

\(M=\dfrac{x-3}{x}+\dfrac{y-3}{y}+\dfrac{z-3}{z}\)

\(M=1-\dfrac{3}{x}+1-\dfrac{3}{y}+1-\dfrac{3}{z}\)

\(M=3-\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)\)

\(M=3-3\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(1+1+1\right)^2}{x+y+z}=\dfrac{9}{x+y+z}=\dfrac{3}{4}\)

\(\Rightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge\dfrac{9}{4}\)

\(\Rightarrow3-3\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\le\dfrac{3}{4}\)

\(\Leftrightarrow M\le\dfrac{3}{4}\)

Vậy \(M_{max}=\dfrac{3}{4}\)

Dấu " = " xảy ra khi \(x=y=z=4\)

Bài 2

\(P=\dfrac{\left(a+b+c\right)^2}{30\left(a^2+b^2+c^2\right)}+\dfrac{a^3+b^3+c^3}{4abc}-\dfrac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\)

Xét \(\dfrac{a^3+b^3+c^3}{4abc}\)

\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc}{4abc}\)

\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{4abc}+\dfrac{3}{4}\)

\(=\dfrac{1}{4}\left(\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{ab}\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+\dfrac{3}{4}\)

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge\dfrac{\left(1+1+1\right)^2}{ab+bc+ca}=\dfrac{9}{ab+bc+ca}\)

\(\Rightarrow\dfrac{1}{4}\left(\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{ab}\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+\dfrac{3}{4}\ge\dfrac{9\left(a^2+b^2+c^2-ab-bc-ca\right)}{4\left(ab+bc+ca\right)}+\dfrac{3}{4}\)

\(\Rightarrow\dfrac{1}{4}\left(\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{ab}\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+\dfrac{3}{4}\ge\dfrac{9\left(a^2+b^2+c^2\right)-9\left(ab+bc+ca\right)}{4\left(ab+bc+ca\right)}+\dfrac{3}{4}\)

\(\Rightarrow\dfrac{1}{4}\left(\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{ab}\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+\dfrac{3}{4}\ge\dfrac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\dfrac{9}{4}+\dfrac{3}{4}\)

\(\Rightarrow\dfrac{1}{4}\left(\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{ab}\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+\dfrac{3}{4}\ge\dfrac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{a^3+b^3+c^3}{4abc}\ge\dfrac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\dfrac{3}{2}\)

\(\Rightarrow\dfrac{a^3+b^3+c^3}{4abc}-\dfrac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\ge\dfrac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\dfrac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}-\dfrac{3}{2}\)

\(\Rightarrow\dfrac{a^3+b^3+c^3}{4abc}-\dfrac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\ge\dfrac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}-\dfrac{3}{2}\) (1)

Xét \(\dfrac{\left(a+b+c\right)^2}{30\left(a^2+b^2+c^2\right)}\)

\(=\dfrac{a^2+b^2+c^2+2\left(ab+bc+ca\right)}{30\left(a^2+b^2+c^2\right)}\)

\(=\dfrac{1}{30}+\dfrac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}\) (2)

Cộng (1) và (2) theo từng vế

\(P\ge\dfrac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}+\dfrac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}-\dfrac{22}{15}\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\dfrac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}+\dfrac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}\ge2\sqrt{\dfrac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{225\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)}}\)

\(\Rightarrow\dfrac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}+\dfrac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}\ge2\sqrt{\dfrac{1}{225}}\)

\(\Rightarrow\dfrac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}+\dfrac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}\ge\dfrac{2}{15}\)

\(P\ge\dfrac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}+\dfrac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}-\dfrac{22}{15}\ge\dfrac{2}{15}-\dfrac{22}{15}=-\dfrac{4}{3}\)

\(\Leftrightarrow P\ge-\dfrac{4}{3}\)

Vậy \(P_{min}=\dfrac{-4}{3}\)

Dấu " = " xảy ra khi \(a=b=c=1\)

Bình luận (2)
Phạm Thúy Vy
13 tháng 4 2017 lúc 11:28

Bài 1

\(M=\dfrac{2x+y+z-15}{x}+\dfrac{x+2y+z-15}{y}+\dfrac{x+y+2z-15}{z}\)

Bình luận (0)
Phạm Thúy Vy
13 tháng 4 2017 lúc 11:30

Bài 2:

\(P=\dfrac{\left(a+b+c\right)^2}{30\left(a^2+b^2+c^2\right)}+\dfrac{a^3+b^3+c^3}{4abc}-\dfrac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\)

Bình luận (0)